

CCC Annual Report

UIUC, August 20, 2014

Mold Heat Transfer and Distortion during Startup Transient

Lance C. Hibbeler Postdoctoral Research Fellow

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Introduction / Objectives

- Investigate the thermal and mechanical behavior of a thin-slab caster narrow-face mold
 - During startup and at steady-state casting
- Combine knowledge from mold-filling simulations and plant data to create a realistic model
- Compare distortion model predictions with plant measurements using inclinometer data. Validation already successful at steady-state.

L. C. Hibbeler

Symmetric half includes all geometric features

asting

• Mold and waterbox = 317k nodes, 735k elements

- Waterbox assumed thermally inert and not included
- Both detailed and reduced-order mold models used here

Thermal Boundary Conditions

6

Mold Bolts

- Bolts modeled as truss elements
- Distributed constraint equations tie bolts to mold and waterbox
- Tightening torque converted to axial force

$$F_{\text{bolt}} = \frac{T}{D_{\text{bolt}}/2} \left(\frac{\pi D_{\text{bolt}} - \eta_{\text{bolt}} p_{\text{t}}}{p_{\text{t}} + \eta_{\text{bolt}} \pi D_{\text{bolt}}} \right)$$

$$-$$
 100 N·m torque = 30 kN force

- η_{bolt} = 0.25 coefficient of friction for greased bolts

L. C. Hibbeler

7

8

More detail: Hibbeler *et al.*, *MTB* 2012 and Thomas *et al.*, *I&SM* 1998

University of Illinois at Urbana-Champaign

Mechanical Behavior

Metals Processing Simulation Lab

Mold and waterbox modeled as elastic
 σ = C : (ε - εth)

$$\boldsymbol{\varepsilon} = \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}} \right) \qquad \boldsymbol{\varepsilon}^{\mathrm{th}} = \alpha \left(T - T_{\mathrm{ref}} \right) \boldsymbol{I}$$

$$\mathbb{C}_{ijk\ell} = \frac{E}{2\left(1+\nu\right)} \left(\delta_{ik}\delta_{jl} + \delta_{i\ell}\delta_{kj}\right) + \frac{\nu E}{\left(1+\nu\right)\left(1-2\nu\right)} \delta_{ij}\delta_{k\ell}$$

• Elastic models can match measurements of waterbox distortion (Thomas *et al.*, *I&SM* 1998), but inelastic behavior necessary to predict cracks (O'Connor and Dantzig, MMTB 1994)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • L. C. Hibbeler

Material Properties

Quantity	Symbol	Value	Unit
Mold - CuCrZr alloy			
Thermal conductivity	k_{mold}	350	${ m W}{ m m}^{-1}{ m K}^{-1}$
Mass density	$ ho_{ m mold}$	8900	${ m kg}{ m m}^{-3}$
Specific heat capacity	$c_{p,\mathrm{mold}}$	385	$ m Jkg^{-1}K^{-1}$
Young's modulus	$E_{\rm mold}$	117	GPa
Poisson's ratio	$ u_{ m mold}$	0.181	_
Coefficient of thermal expansion	α_{mold}	18	$(\mu m/m)/K$
Waterbox - AISI 316Ti			
Young's modulus	$E_{\rm waterbox}$	200	GPa
Poisson's ratio	$\nu_{\rm waterbox}$	0.299	_
Mold-waterbox coefficient of friction	μ	0.5	_
Liquid steel mass density	$ ho_{ m steel}$	7400	${\rm kg}{\rm m}^{-3}$
Acceleration due to gravity	g	9.807	${ m ms^{-2}}$

Startup Model – During Filling

- Average mold level based on assumption of rising flat surface during filling is reasonable (Wang and Zhang, ISIJ Int. 2010), and Hai Hao (previous talk)
- Apply a transient BC from the steady-state profiles, *e.g.*, $q_{hot}(z,t) = q_{hot}^{SS}(t-t_0)$

 q_{hot} in 3D model at given position *z* and time since start *t*

Steady state (CON1D) q_{hot} time below meniscus computed from time since start *t* and the time of initial solidification $t_0(z,t)$ for the 3D model point at position *z*

Mold Filling

Mold level and dummy bar movement calculated based on casting speed and SEN flow rate

Time Since Initial Solidification

• The initial solidification time of the point at *z* is found by integrating the casting speed backwards in time to the meniscus (similar to

Iwasaki and Thomas, TMS 2012)

Startup Heat Flux – Filling

 Based on the work of Hai Hao, the heat flux during startup can be taken as uniform

asting

• Apply this uniform value as the measured heat flux, scaled to the effective mold length

Thermocouple Temperatures during Startup – Bottom Half

•

University of Illinois at Urbana-Champaign

All thermocouples matched reasonably well during first 60 seconds

Mismatch afterwards at TCs higher in mold, suggests χ = 2.3 too large

L. C. Hibbeler

17

•

Trends and timing of TCs correct

0		
Ö		
Stin		
10	uous	
	Concerti	
	SUSOIL	

Metals Processing Simulation Lab

Machine	Cores	Sim Time after 24 h	Speedup
Desktop	2	1.3 s	1
Blue Waters	16	3.2 s	2.5
Blue Waters	32	7.9 s	6.1
Blue Waters	64	21.2 s	16.3

Using temperature-difference-controlled time-stepping, $\Delta t < 0.002$ until 30 s,

then $\Delta t < 0.05$ until 150 s, then $\Delta t < 2$ s out to 600 s (limited by output requests)

Heat Transfer

•

Inclinometer Measurements

- Slope of waterbox measured online with inclinometers
 - 94 mm below top of mold
 - 31 mm above bottom of mold
- ±10 V signal mapped to ±6° •
- First-order low-pass filter to • remove noise from oscillation

- Mold distorts into parabolic arc but transient slope not matched by current model
 - Upper half too hot?

University of Illinois at Urbana-Champaign

- Need inelastic effects?

Distortion and temperatures at 80 s after start of mold filling

University of Illinois at Urbana-Champaign

20

• Middle-mold taper matches applied value, significantly different at ends

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

L. C. Hibbeler

21

L. C. Hibbeler

- (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- National Center for Supercomputing Applications, Blue Waters cluster

• R. C. Schimmel, H. H. Visser, and A. Chown of Tata Steel IJmuiden